

ARAB UNITY SCHOOL

CURRICULUM OVERVIEW

2019 - 2020

A guide for Parents and Students

SUBJECT: PHYSICS

Overview of the year:

The IGCSE curriculum aims to ensure that all pupils:

• to provide an enjoyable and worthwhile educational experience for all learners, whether or not they go on to study science beyond this level

• to enable learners to acquire sufficient knowledge and understanding to: become confident citizens in a technological world and develop an informed interest in scientific matters, be suitably prepared for studies beyond Cambridge IGCSE

• to allow learners to recognise that science is evidence based and understand the usefulness, and the limitations, of scientific method

• to develop skills that: are relevant to the study and practice of physics, are useful in everyday life, encourage a systematic approach to problem solving, encourage efficient and safe practice, encourage effective communication through the language of science

• to develop attitudes relevant to physics such as: concern for accuracy and precision, objectivity, integrity, enquiry, initiative and inventiveness

• to enable learners to appreciate that: science is subject to social, economic, technological, ethical and cultural influences and limitations, the applications of science may be both beneficial and detrimental to the individual, the community and the environment.

PLEASE USE THE FOLLOWING WEBSITES FOR SOLVING PAST PAPER QUESTIONS AND FOR DETAILED NOTES TOPIC WISE –

https://znotes.org/cie-igcse/physics-0625 https://www.physicsandmathstutor.com/physics-revision/igcse-cie/ https://www.savemyexams.co.uk/igcse-physics-cie-new/ http://www.oxnotes.com/igcse-physics.html https://www.physicsclassroom.com/ https://gcsephysicsninja.com/

SIMULATIONS -

https://phet.colorado.edu/en/simulations/category/physics https://interactives.ck12.org/simulations/physics.html

TERM ONE		
Main topic	Skills and content:	ASSESSMENTS:
Length & Time	Length and volume measurements.	
	Choose appropriate instruments to measure	
	the given objects (Self – managers)	
	Measure the interval of time between	
	events (Reflective Thinkers Enquirers)	
	events. (Reflective minkers, Enquirers)	
	Calculate the period of a pendulum	
	(Effective organizers, Reflective Thinkers)	
	(Litective organizers, Kenective Thinkers)	
	Calculation of average values (distance	
	time)	
	(Effective organizers, Beflective Thinkers)	
	(Effective organizers, Reflective milikers)	
	Find the diameter of a needle, investigation	
	(BIOD)	

Density & Volume	Density and Volume – Recall and use the equation ρ = mass/ Volume Describe an experiment to determine the density of a liquid and of a regularly	Research work An independent project by the student to plot the speed-time and velocity-time graph of their own long journey of choice. the same will be used by the student to analyse and understand the difference between distance and displacement.
Motion Forces		The data entry of journey facilitates the students to be self- managers. In order for successful data collection they will have to stay organized the entire time which in turn makes them effective organizers. The project itself makes the students creative thinkers with lot of

shaped solid and make the necessary	innovation incorporated. The
calculation. (scientific enquiry and	learners as the project done for
reflective learning)	the unit learned will be
ef the density of an imagularly shared	constantly used and knowledge
of the density of an irregularly shaped	applied. The <mark>enquiry skills</mark> of the
solid by the method of displacement.	student will help them analyze
(work in teams)	the graph successfully for
Predict whether an object will float based	calculation of requisite
on density data. <mark>(creative thinkers</mark>)	quantities.
	The students are required to
Motion –	submit the projects on or before
Introduction to scalars and vectors.	5 ^{°°} of January 2020.
Define and calculate speed, average	Curricular test
speed, acceleration.	A tost will be conducted
Plotting and interpretation of different	hetween the week of 20-24
types of graphs of motion.	October 2019 to ensure
Differentiate motion types using variation	continuous learning among the
of velocity and acceleration.	students. All topics covered till
Introduce concept of deceleration.	the previous week to that will be
Motion of objects experiencing free fall	included for the test. 30% of the
acceleration.	curricular test marks will be
Roles of air resistance and gravity on	taken for the end of year grades.
motion. Concept of terminal velocity.	The skills tested on the students
Experiment – plan and investigate the	will be in line with the curriculum
variation of terminal velocity of a free	standards set by Cambridge
falling object. (creative thinkers, enquiry	understanding applications
skills, team builders)	scientific enquiry inventiveness
	and objectivity.
Forces and momentum	
Define force and its effect.	End of term exam
Describe the change of motion due to a	At the end of the term all the
force acting on it.	units will be included for the
Plan an <mark>experiment</mark> and investigate the	exam to check the level of
factors affecting effectiveness of crumple	understanding and skills of the
zones. (<mark>creative scientific enquiry, self-</mark>	students.
managers, application of knowledge)	
Finding resultant force algebraically and	Homework –
using vector diagrams.	homework to the students as
Identify air resistance and friction as	he/she sees fit.
forces that act in the direction opposite to	An example given here:
motion.	For given scenarios students are
Friction between surfaces can cause	asked to find the direction of
production of heat.	forces and the factors affecting
	the resultant.

Introduce centripetal force and the turning effect of force including circular motion. Explain planetary motion using the concept (application of knowledge) Understand the concepts of momentum and impulse Calculate p and I Conservation of momentum	The simulations can be used for better understanding. Scope for BYOD. Research some ideas about motion proposed by scientists of different era. Work in terms to come up with an illustrated talk (creative thinkers and team builders). Individual essays about the discussion of new ideas proposed as years progressed (self-managers).

TERM TWO	Moment of force	ASSESSMENTS:
	Identify elastic force by defining Hooke's	
Main topic.	law.	Research and experimental
skills and	Draw extension-load graphs and identify	work
content:	types of graphs using the forces acting.	An independent project by the
	Significance of limit of proportionality.	student to calculate the work
	Calculation and significance of moment of	done and power of your body
Moment of	force.	while conducting a physical
force	Conditions for equilibrium.	experiment. Students are needed to take data
	Perform and describe an experiment to	while walking up a flight of stairs
Wave	determine the position of the center of	and use the data collected to
properties	mass of a plane lamina. (team building,	calculate the requisite
	reflective learners)	quantities. The data by research
Sound	Describe qualitatively the effect of the	can be collected for different
	position of the center of mass on the	world heritage sites like burj
Work, power &	stability of simple objects.	khalifa, leaning tower of pisa,
energy		Eiffel tower, etc. time estimates
	Wave properties	in turn use it for calculations
		The data entry of journey
	Describe wave motion in terms of energy	facilitates the students to be self-
	transfer and illustrate as vibrations by	managers. In order for successful
	ropes and springs.	data collection they will have to
	Describe the significance of a wave front.	stay organized the entire time
	Define speed, frequency, amplitude and	which in turn makes them
	wavelength.	effective organizers. The project
	Plan an experiment and investigate to	creative thinkers with lot of
	prove the equation frequency = speed x	innovation incorporated. The
	affective ergenizers)	students remain to be reflective
	Effective organizers)	learners as the project done for
	and longitudinal waves	the unit learned will be
	Reflection refraction and diffraction of	constantly used and knowledge
	waves (explain using water waves)	applied. The enquiry skills of the
	Effect of change in properties of waves on	the graph successfully for
	diffraction.	calculation of requisite
	Calculation of unknown quantities using	quantities.
	f= w x s	The students are required to
		submit the projects on or before
	Sound	12 th of April 2020.
		Currie landard
	Nature and production of sound waves.	Curricular test

	 State the approximate audible frequency range to humans. Understanding of ultrasound. Speed of sound – experiment. (solid, liquid and air). Relate the loudness and pitch of sound waves to amplitude and frequency. Activity - Work in teams to analyse the musical sound produced using a wave diagram of oscilloscope to describe the properties. (reflective learning, enquiry) Describe how the reflection of sound may produce an echo. Work, power and energy 	A test will be conducted between the week 9-13 February 2020 to ensure continuous learning among the students. All topics covered till the previous week to that will be included for the test. 30% of the curricular test marks will be taken for the end of year grades. The skills tested on the students will be in line with the curriculum standards set by Cambridge which includes, knowledge and understanding, applications, scientific enquiry, inventiveness and objectivity.
	Identify different types of energy and energy transfers. Principle of conservation of energy. Learn and understand calculation of energy and energy transfers using formulae for kinetic and potential energy.	End of term exam At the end of the term all the units will be included for the exam to check the level of understanding and skills of the students.
	Learn about some energy resources and effective ways of using them. Energy from sun identified as nuclear energy due to fusion. (Solar cells) Calculation of efficiency of the engine using formula.	Homework – Teachers will be assigning homework to the students as he/she sees fit. An example given here: To find out how forces affect the length of the spring. Analyse the
	use set of bouncing balls to calculate the efficiency by planning and conducting an investigative experiment. (team building, effective organisers, self managers) Understanding and calculation of work done as W = F x d Power calculations and definitions.	results and prove the Hooke's law. Skills – scientific enquiry and application of knowledge. Scope of BYOD. The data, analysis and the graphs for the experiment can be plotted on their own device.
	Pressure	
TERM THREE Main topic, skills and	Define pressure and force per unit area. Describe the simple mercury barometer and its use in measuring atmospheric	ASSESSMENTS: Progression tests –
content:	pressure.	

	Doloto (without coloulation) the process	DT is schoduled to be conducted
-	Relate (without calculation) the pressure	hotwoon 2 rd of May to 4 th of
Pressure	beneath a liquid surface to depth and to	between 5 of May to 4 of
	density, using appropriate examples.	Julie.
Light	Use and describe the use of a manometer.	End of torm oxom
	Pressure in terms of depth, density.	At the end of the term all the
EM spectrum		At the end of the term all the
		included for the even to shock
	Light	the level of understanding and
		skills of the students
	Differentiate between light and sound	skiis of the students.
	waves	Activities —
	Formation of ontical image by plane mirror	Light unit when taught in class
	State the law of reflection	will consist of activities to be
	Demonstration of refraction and define it	done in class to engage them in
	State Spall's law and associated formulae	team building.
	Identify angles during refraction	
	Define critical angle and evaluate Tetal	
	Define critical angle and explain Total	Homework –
	Internal reflection.	Teachers will be assigning
	Application of TIR in optical fibre and	homework to the students as
	endoscopy.	he/she sees fit.
	Image formation by convex lens.	An example given here:
	Nature of images formed at different	Draw ray diagrams accurately for
	positions of objects.	a given type lens by placing
	Terminology for lens	objects at different positions.
	Ray diagrams for the lens.	Skills –
	Magnifying glass- ray diagram and	Application of knowledge,
	application.	reflective learning, analysis
	Dispersion of light into colours.	In class with PVOD similar
		nrograms can be done and
	EM spectrum	tabulate the data using
		simulation programs
	Features of em spectrum.	
	Comparison of properties of light waves	
	and em spectrum.	
	Typical properties and uses.	
	Explain some harmful effects and safety	
	risks.	
	Speed of em waves in vacuum and air.	